Inheritance & Variation of Traits, Inheritance 1: Mitosis (HS), Inheritance 2: Genes and Growth (MS), Inheritance 2: Role of DNA (HS), Inheritance 4: Asexual/Sexual (MS), Life Science, M&E 1: Photosynthesis (HS), M&E 1: Photosynthesis (MS), Matter & Energy in Organisms/Ecosystems, S&F 1: Cells (MS), S&F 2: Cell Function (MS), Structure and Function

Chloroplast Division

Chloroplast Division SUMMARY: Chloroplast division in plants is still a fairly unknown topic when it comes to specific cellular/molecular mechanisms. This paper describes, step by step, all the proteins and enzymes involved in helping chloroplasts divide (FtsZ, Min system, ARC6, etc.) It also compares the division of chloroplasts to binary fission in various prokaryotes (FtsZ… Continue reading Chloroplast Division

Inheritance & Variation of Traits, Inheritance 1: Behavior and Reproduction (MS), Inheritance 1: Mitosis (HS), Inheritance 4: Population Genetics (HS), Interdependent Relationships in Ecosystems, IR 1: Ecosystem Interactions (MS), IR 2: Affecting Biodiversity (HS), Life Science, M&E 3: Food Webs (MS), M&E 5: Changing Ecosystems (MS), Matter & Energy in Organisms/Ecosystems, Natural Selection & Evolution, NSE 1: Evolution Evidence (HS), NSE 2: Evolution Factors (HS), NSE 3: Trait Selection (HS), NSE 4: Adaption (HS), NSE 4: Fitness (MS), NSE 5: Natural Selection (MS), NSE 5: Population Flux (HS)

De novo origins of multicellularity in response to predation

De novo origins of multicellularity in response to predation SUMMARY: Chlamydomonas are common, single-celled green algae that have flagella and can move around. They’re a strange cross between plants and protists. In this study, scientists subjected chlamydomonas to predation by paramecia (common freshwater ciliates) and observed that after about 750 generations, the chlamydomonas took on… Continue reading De novo origins of multicellularity in response to predation

Earth Science, Earth's System, ES 1: Geochemical Cycles (HS), ES 4: Carbon Cycling (HS), HE 3: Stratigraphic Records (MS), History of Earth, Inheritance & Variation of Traits, Inheritance 1: Mitosis (HS), Inheritance 4: Population Genetics (HS), Interdependent Relationships in Ecosystems, IR 1: Ecosystem Interactions (MS), Life Science, M&E 1: Photosynthesis (HS), M&E 1: Photosynthesis (MS), M&E 4: Biogeochemical Cycles (MS), Matter & Energy in Organisms/Ecosystems, Natural Selection & Evolution, NSE 1: Fossil Records (MS), NSE 5: Population Flux (HS)

The evolution of diatoms and their biogeochemical functions

The evolution of diatoms and their biogeochemical functions SUMMARY: This article talks about the evolution, cell structure, and ecological role of diatoms. The first section is an introduction to what diatoms are. The second section talks about the evolution of photosynthesis (from cyanobacteria to eukaryotes with chloroplast). The third section explains the significance of the… Continue reading The evolution of diatoms and their biogeochemical functions

Inheritance & Variation of Traits, Inheritance 1: Mitosis (HS), Inheritance 4: Asexual/Sexual (MS), Life Science

Rotifer Reproduction Mechanism

Genetic exchange among bdelloid rotifers is more likely due to horizontal gene transfer than to meiotic sex SUMMARY: This study looked at the conclusion drawn by another team of researchers that said that bdelloid rotifers possibly used a type of meiosis similar to that found in a genus of plants called Oenothera [1]. Five hundred… Continue reading Rotifer Reproduction Mechanism