Chemical Reactions, CR 1: Determining Chemical Reactions (MS), CR 3: Evidence of Reactions (HS), CR 4: Driving Reactions (HS), HSus 4: Evaluating Solutions (HS), HSus 5: Showing Human Impact (HS), Human Sustainability, Inheritance & Variation of Traits, Inheritance 2: Genes and Growth (MS), Inheritance 2: Role of DNA (HS), Inheritance 3: Mutations (HS), Inheritance 3: Mutations (MS), Life Science, M&E 2: Anabolism/Catabolism (HS), Matter & Energy in Organisms/Ecosystems, Natural Selection & Evolution, NSE 1: Evolution Evidence (HS), NSE 2: Evolution Factors (HS), NSE 3: Trait Selection (HS), Physical Science, S&F 1: Cells (MS), Structure and Function

Using NAC Against Antibiotic Resistance Bacteria

N-acetyl Cysteine Coated Gallium Particles Demonstrate High Potency against Pseudomonas aeruginosa PAO1 SUMMARY: Antibiotic resistant bacterial infections are on the rise, especially in hospitals. One of the culprits is the bacteria Pseudomonas aeruginosa (POA1). Researchers are quickly running out of antibiotics to use against resistant strains. The problem has reached the point where colistin, a… Continue reading Using NAC Against Antibiotic Resistance Bacteria

HSus 1: Forecasting Disasters (MS), HSus 1: Human Activity (HS), HSus 2: Managing Resources (HS), HSus 3: Human/Ecosystem Interactions (HS), Human Sustainability, Interdependent Relationships in Ecosystems, IR 1: Ecosystem Interactions (MS), S&F 1: DNA to Proteins (HS), S&F 4: Stimuli Response (MS), S&P 1: Atoms & Molecules (MS), S&P 4: Molecule Traits (HS), Structure & Properties of Matter, Structure and Function

Rotifers Paralyzing Schistosomes

A rotifer-derived paralytic compound prevents transmission of schistosomiasis to a mammalian host SUMMARY: Researchers discovered that a new molecule produced by the rotifer, Rotaria rotatoria, paralyzes cercariae. Cercariae are the free-living/infectious stage of the flatworm Schistosoma, the cause of schistosomiasis. R. rotatoria live on the shell of freshwater snails and secrete a compound scientists have… Continue reading Rotifers Paralyzing Schistosomes

Interdependent Relationships in Ecosystems, IR 1: Ecosystem Interactions (MS), IR 3: Ecosystem Stability (HS), IR 5: Survival (HS), Life Science, M&E 2: Anabolism/Catabolism (HS), M&E 2: Metabolism (MS), M&E 3: Cellular Respiration (HS), M&E 3: Food Webs (MS), M&E 4: Aerobic/Anaerobic Resp. (HS), M&E 4: Biogeochemical Cycles (MS), M&E 5: Matter/Energy Cycles (HS), M&E 6: Biogeochemical Cycles (HS), Matter & Energy in Organisms/Ecosystems, S&F 1: Cells (MS), S&F 1: DNA to Proteins (HS), S&F 4: Stimuli Response (MS), Structure and Function

Different Enzymes to Digest Different Plant Substrates

The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates SUMMARY: Leaf-cutter ants and a fungus called Leucoagaricus gongylophorus have a symbiotic relationship. The ants harvest plant material for the fungus to “eat” and then the ants feed off of the gongylidia. These swollen parts of the hyphae are no… Continue reading Different Enzymes to Digest Different Plant Substrates

Life Science, M&E 2: Anabolism/Catabolism (HS), M&E 2: Metabolism (MS), M&E 3: Cellular Respiration (HS), M&E 4: Aerobic/Anaerobic Resp. (HS), Matter & Energy in Organisms/Ecosystems, Natural Selection & Evolution, NSE 2: Evolution Factors (HS), NSE 2: Taxonomy (MS), NSE 4: Adaption (HS), S&F 1: Cells (MS), S&F 1: DNA to Proteins (HS), S&F 2: Cell Function (MS), S&F 4: Stimuli Response (MS), Structure and Function

The architecture of cell differentiation in choanoflagellates and sponge choanocytes

The architecture of cell differentiation in choanoflagellates and sponge choanocytes SUMMARY: The closest relative to multicellular animals are single-celled organisms called choanoflagellates. These protists look like collar cells. These are cells that have a microvillar ring (the collar) around a flagellum. An example of these cells in animals are sensory epidermal cells. To get a… Continue reading The architecture of cell differentiation in choanoflagellates and sponge choanocytes

Life Science, M&E 2: Anabolism/Catabolism (HS), Matter & Energy in Organisms/Ecosystems, NSE 2: Taxonomy (MS), NSE 3: Embryology (MS), S&F 1: DNA to Proteins (HS), S&F 2: Body Systems (HS), S&F 3: Homeostasis (HS), S&F 4: Stimuli Response (MS), Structure and Function

The Endocannabinoid System of Animals

The Endocannabinoid System of Animals SUMMARY: This article talks about the endocannabinoid system (ECS) in animals. The first and second section talk about the three parts of the ECS: receptors (CBR1 and CBR2), ligands (endocannabinoids), and the ligand degrading enzymes. The receptors are G-protein coupled receptors, the ligands bind directly to these receptors, and the… Continue reading The Endocannabinoid System of Animals

Life Science, Non-NGSS Articles, Physical Science, S&F 2: Cell Function (MS), Structure and Function, W 1: Graphing Waves (MS), W 1: Wave Relationships (HS), W 2: Wave Behavior (MS), W 4: Effects of E-magnet Radiation (HS), Waves & Electromagnetic Radiation

Toxic wavelength of blue light changes as insects grow

Toxic wavelength of blue light changes as insects grow SUMMARY: Different wavelengths of light are toxic to insects. In this study, scientists looked at the different effects of blue light on fruit flies (Drosophila). They found that each developmental stage was more susceptible to different wavelengths. There were also differences between males and females. For… Continue reading Toxic wavelength of blue light changes as insects grow