E 1: Energy Flow (HS), E 1: Energy, Mass, & Speed (MS), E 2: Energy & Motion (HS), E 2: Potential Energy (MS), E 5: Kinetic Energy Transfer (MS), Energy, F&I 1: Newton's 2nd Law (HS), F&I 1: Newton's 3rd Law (MS), F&I 2: Newton's 1st Law (MS), F&I 2: Newton's 3rd Law (HS), F&I 4: Gravity & Electrostatic Forces (HS), F&I 4: Gravity & Mass (MS), Forces & Interactions, Physical Science

The meaning of blood pressure

The meaning of blood pressure SUMMARY: This article talks about all the physical aspects of blood pressure. The first few sections talks about the 3 forces that affect blood pressure: elastic, kinetic, and gravitational. The author also talks about how kinetic energy can be converted to elastic energy in the case of an aneurysm in… Continue reading The meaning of blood pressure

E 1: Energy Flow (HS), E 3: Designing Energy Transfer (HS), Earth Science, Earth's System, Energy, ES 1: Materials/Energy Flow (MS), ES 4: Carbon Cycling (HS), Interdependent Relationships in Ecosystems, IR 1: Carrying Capacity (HS), Life Science, M&E 1: Photosynthesis (HS), M&E 1: Photosynthesis (MS), Matter & Energy in Organisms/Ecosystems, Physical Science, W 1: Graphing Waves (MS), W 1: Wave Relationships (HS), W 2: Wave Behavior (MS)

Biomass from microalgae

Biomass from microalgae: the potential of domestication towards sustainable biofactories SUMMARY: Microalgae could potentially be a renewable source of energy for people. Unfortunately, there are many issues right now with growing enough algae and keeping the process affordable (aka: it’s too expensive to grow and use algae commercially). The article is divided up into several… Continue reading Biomass from microalgae

E 1: Energy Flow (HS), E 3: Designing Energy Transfer (HS), E 3: Insulating/Conducting Heat (MS), E 4: Heat Transfer (HS), E 4: Testing Energy/Heat Transfer (MS), Energy, Physical Science

Hair coat properties of donkeys, mules and horses in a temperate climate

Hair coat properties of donkeys, mules and horses in a temperate climate SUMMARY: Donkeys and horses evolved to live in different climates. Donkeys are more adapted to the dry, hot areas while horses are able to live in colder climates. Researchers looked at the difference in seasonal hair growth of donkeys, horses, and mules to… Continue reading Hair coat properties of donkeys, mules and horses in a temperate climate

Chemical Reactions, CR 3: Testing Endo/Exothermic Reactions (MS), E 1: Energy Flow (HS), E 3: Designing Energy Transfer (HS), E 3: Insulating/Conducting Heat (MS), E 4: Heat Transfer (HS), E 4: Testing Energy/Heat Transfer (MS), E 5: Energy from Electric/Magnetic Fields (HS), E 5: Kinetic Energy Transfer (MS), Energy, F&I 3: Electric/Magnetic Forces (MS), F&I 5: Electricity & Magnets (HS), Forces & Interactions, Physical Science, S&P 3: Heat & Reactions (MS), S&P 3: Nuclear Decay (HS), Structure & Properties of Matter

Pu burning in a molten salt fast reactor

A disruptive approach to eliminating weapon-grade plutonium – Pu burning in a molten salt fast reactor SUMMARY: This study looked at the efficiency of several types of nuclear reactions: molten-salt reactors, light water reactors, and fast reactors. Using a program (written in Python), scientists looked at the data from each type of reactors (on an… Continue reading Pu burning in a molten salt fast reactor

Chemical Reactions, CR 2: Energy in Reactions (HS), CR 4: Driving Reactions (HS), E 1: Energy Flow (HS), Earth Science, Earth's System, Energy, ES 1: Materials/Energy Flow (MS), Life Science, M&E 4: Biogeochemical Cycles (MS), Matter & Energy in Organisms/Ecosystems, Physical Science, S&P 3: Heat & Reactions (MS), Structure & Properties of Matter, W&C 3: Global Warming Causes (MS), Weather and Climate

Environmental impacts on the diversity of methane-cycling microbes and their resultant function

Environmental impacts on the diversity of methane-cycling microbes and their resultant function SUMMARY: There are two types of microbes that are involved in methane cycling: ones that produce methane (methanogens) and ones that use methane as a source of energy and convert it to carbon dioxide (methanotrophs). This article review looked at all the different… Continue reading Environmental impacts on the diversity of methane-cycling microbes and their resultant function

Chemical Reactions, CR 2: Energy in Reactions (HS), E 1: Energy Flow (HS), Earth Science, Earth's System, Energy, ES 1: Materials/Energy Flow (MS), ES 4: Carbon Cycling (HS), ES 5: Life on Earth (HS), Interdependent Relationships in Ecosystems, IR 1: Ecosystem Interactions (MS), IR 3: Ecosystem Stability (HS), Life Science, M&E 3: Food Webs (MS), M&E 4: Biogeochemical Cycles (MS), M&E 5: Matter/Energy Cycles (HS), M&E 6: Biogeochemical Cycles (HS), Matter & Energy in Organisms/Ecosystems, Physical Science, W&C 2: Biomes (MS), W&C 2: Future Climate (HS), Weather and Climate

Moss-Cyanobacteria relationship in the boreal forest

Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems SUMMARY: Moss, cyanobacteria, and the trees of the boreal forest have a complicated relationship. This article first focuses on the nitrogen cycle, addressing the various sources of nitrogen and the factors (both abiotic and biotic) that affect nitrogen fixation. Turns out, temperature, water availability,… Continue reading Moss-Cyanobacteria relationship in the boreal forest