Chemical Reactions, CR 3: Testing Endo/Exothermic Reactions (MS), E 1: Energy Flow (HS), E 3: Designing Energy Transfer (HS), E 3: Insulating/Conducting Heat (MS), E 4: Heat Transfer (HS), E 4: Testing Energy/Heat Transfer (MS), E 5: Energy from Electric/Magnetic Fields (HS), E 5: Kinetic Energy Transfer (MS), Energy, F&I 3: Electric/Magnetic Forces (MS), F&I 5: Electricity & Magnets (HS), Forces & Interactions, Physical Science, S&P 3: Heat & Reactions (MS), S&P 3: Nuclear Decay (HS), Structure & Properties of Matter

Pu burning in a molten salt fast reactor

A disruptive approach to eliminating weapon-grade plutonium – Pu burning in a molten salt fast reactor SUMMARY: This study looked at the efficiency of several types of nuclear reactions: molten-salt reactors, light water reactors, and fast reactors. Using a program (written in Python), scientists looked at the data from each type of reactors (on an… Continue reading Pu burning in a molten salt fast reactor

Chemical Reactions, CR 2: Energy in Reactions (HS), CR 4: Driving Reactions (HS), E 1: Energy Flow (HS), Earth Science, Earth's System, Energy, ES 1: Materials/Energy Flow (MS), Life Science, M&E 4: Biogeochemical Cycles (MS), Matter & Energy in Organisms/Ecosystems, Physical Science, S&P 3: Heat & Reactions (MS), Structure & Properties of Matter, W&C 3: Global Warming Causes (MS), Weather and Climate

Environmental impacts on the diversity of methane-cycling microbes and their resultant function

Environmental impacts on the diversity of methane-cycling microbes and their resultant function SUMMARY: There are two types of microbes that are involved in methane cycling: ones that produce methane (methanogens) and ones that use methane as a source of energy and convert it to carbon dioxide (methanotrophs). This article review looked at all the different… Continue reading Environmental impacts on the diversity of methane-cycling microbes and their resultant function

Chemical Reactions, CR 2: Energy in Reactions (HS), CR 4: Driving Reactions (HS), Physical Science, S&P 1: Atoms & Molecules (MS), S&P 3: Heat & Reactions (MS), S&P 4: Molecule Traits (HS), Structure & Properties of Matter, W 1: Graphing Waves (MS), W 1: Wave Relationships (HS), W 2: Wave Behavior (MS), Waves & Electromagnetic Radiation

Beaming Pyrimidines Part 4

The Photochemistry of Pyrimidine in Realistic Astrophysical Ices and the Production of Nucleobases SUMMARY: To mimic the conditions on a comet or space clouds, the gas mixture beamed in this experiment was a mixture of: water, methanol, ammonia, methane, and pyrazine. Pyrazine is an isomer of pyrimidine (both have the chemical formula C4H4N2). This mixture… Continue reading Beaming Pyrimidines Part 4

Chemical Reactions, CR 1: Determining Chemical Reactions (MS), CR 1: Predicting Reactions (HS), CR 2: Energy in Reactions (HS), CR 2: Modeling Conservation of Mass (MS), CR 3: Evidence of Reactions (HS), CR 3: Testing Endo/Exothermic Reactions (MS), CR 4: Driving Reactions (HS), Non-NGSS Articles, Physical Science, S&P 1: Atoms & Molecules (MS), S&P 1: Periodic Table Patterns (HS), S&P 3: Heat & Reactions (MS), S&P 4: Molecule Traits (HS), Structure & Properties of Matter, W 1: Graphing Waves (MS), W 1: Wave Relationships (HS), W 2: Wave Behavior (MS), Waves & Electromagnetic Radiation

Beaming Pyrimidines Part 2

Thymine and Other Prebiotic Molecules Produced from the Ultraviolet Photo-Irradiation of Pyrimidine in Simple Astrophysical Ice Analogs(NOT OPEN ACCESS) SUMMARY: In the second edition of beaming pyrimidines, instead of using ammonia, scientists beamed pyrimidines with methanol, water and methanol, methane, and water and methane, at various ratios for each combination. As with “Beaming Pyrimidines Part… Continue reading Beaming Pyrimidines Part 2

Chemical Reactions, CR 4: Driving Reactions (HS), Physical Science, S&P 1: Atoms & Molecules (MS), S&P 1: Periodic Table Patterns (HS), S&P 3: Heat & Reactions (MS), S&P 4: Molecule Traits (HS), Structure & Properties of Matter, W 1: Graphing Waves (MS), W 1: Wave Relationships (HS), W 2: Digital Info (HS), W 2: Wave Behavior (MS), W 3: Digital vs Analog (MS), W 5: Devices (HS), Waves & Electromagnetic Radiation

Beaming Pyrimidines Part 1

Nucleobases and Prebiotic Molecules in Organic Residues Produced from the Ultraviolet Photo-Irradiation of Pyrimidine in NH3 and H2O + NH3 Ices (NOT OPEN ACCESS) SUMMARY: If you beam water and pyrimidines at low temperature and pressure in a sealed chamber, you’ll get cool pyrimidine-based things like uracil, cytosine, isomers of uracil and cytosine. You’ll also… Continue reading Beaming Pyrimidines Part 1