Life Science, Physical Science, S&F 1: Cells (MS), S&F 2: Body Systems (HS), S&F 2: Cell Function (MS), S&F 3: Body Systems (MS), S&P 4: Molecule Traits (HS), Structure & Properties of Matter, Structure and Function

Tardigrades in Space Research – Past and Future

Tardigrades in Space Research - Past and Future SUMMARY: This is a review of the research articles and experiments on tardigrades in space. It's an easy read and best used as an introduction to more articles on the specific experiments conducted by NASA. In the first few sections, the authors explain what tardigrades are, their… Continue reading Tardigrades in Space Research – Past and Future

Chemical Reactions, Earth Science, Non-NGSS Articles, Physical Science, S&P 1: Atoms & Molecules (MS), S&P 4: Molecule Traits (HS), Space Systems, SS 2: Big Bang Theory (HS), Structure & Properties of Matter

Beaming Benzene and Naphthalene

N- and O-Heterocycles Produced from the Irradiation of Benzene and Naphthalene in H2O/NH3-Containing Ices SUMMARY: While pyrimidines have been found on space rocks (carbonaceous chondrites), researchers wanted to see if they can produce different types of heterocyclic molecules in the lab by beaming benzene and naphthalene (both are cyclic organic compounds that can open, substitute… Continue reading Beaming Benzene and Naphthalene

Chemical Reactions, CR 2: Energy in Reactions (HS), CR 4: Driving Reactions (HS), Physical Science, S&P 1: Atoms & Molecules (MS), S&P 3: Heat & Reactions (MS), S&P 4: Molecule Traits (HS), Structure & Properties of Matter, W 1: Graphing Waves (MS), W 1: Wave Relationships (HS), W 2: Wave Behavior (MS), Waves & Electromagnetic Radiation

Beaming Pyrimidines Part 4

The Photochemistry of Pyrimidine in Realistic Astrophysical Ices and the Production of Nucleobases SUMMARY: To mimic the conditions on a comet or space clouds, the gas mixture beamed in this experiment was a mixture of: water, methanol, ammonia, methane, and pyrazine. Pyrazine is an isomer of pyrimidine (both have the chemical formula C4H4N2). This mixture… Continue reading Beaming Pyrimidines Part 4

Chemical Reactions, CR 2: Energy in Reactions (HS), CR 3: Evidence of Reactions (HS), CR 4: Driving Reactions (HS), Non-NGSS Articles, Physical Science, S&P 1: Atoms & Molecules (MS), S&P 4: Molecule Traits (HS), Structure & Properties of Matter

Beaming Pyrimidines Part 3

Irradiation of Pyrimidine in Pure H2O Ice with High-Energy Ultraviolet Photons SUMMARY: In Part 3 of pyrimidine beaming, researchers looked at different energy levels of photons and their effect on pyrimidines. They beamed a water and pyrimidine ice mixture with photons of three different wavelengths. Uracil and the molecule that is the precursor to uracil… Continue reading Beaming Pyrimidines Part 3

Chemical Reactions, CR 1: Determining Chemical Reactions (MS), CR 1: Predicting Reactions (HS), CR 2: Energy in Reactions (HS), CR 2: Modeling Conservation of Mass (MS), CR 3: Evidence of Reactions (HS), CR 3: Testing Endo/Exothermic Reactions (MS), CR 4: Driving Reactions (HS), Non-NGSS Articles, Physical Science, S&P 1: Atoms & Molecules (MS), S&P 1: Periodic Table Patterns (HS), S&P 3: Heat & Reactions (MS), S&P 4: Molecule Traits (HS), Structure & Properties of Matter, W 1: Graphing Waves (MS), W 1: Wave Relationships (HS), W 2: Wave Behavior (MS), Waves & Electromagnetic Radiation

Beaming Pyrimidines Part 2

Thymine and Other Prebiotic Molecules Produced from the Ultraviolet Photo-Irradiation of Pyrimidine in Simple Astrophysical Ice Analogs(NOT OPEN ACCESS) SUMMARY: In the second edition of beaming pyrimidines, instead of using ammonia, scientists beamed pyrimidines with methanol, water and methanol, methane, and water and methane, at various ratios for each combination. As with “Beaming Pyrimidines Part… Continue reading Beaming Pyrimidines Part 2

Chemical Reactions, CR 2: Energy in Reactions (HS), CR 2: Modeling Conservation of Mass (MS), CR 3: Evidence of Reactions (HS), CR 3: Testing Endo/Exothermic Reactions (MS), CR 4: Driving Reactions (HS), CR 5: Conservation of Mass (HS), Physical Science, S&P 4: Molecule Traits (HS), Structure & Properties of Matter, W 1: Graphing Waves (MS), W 1: Wave Relationships (HS), W 2: Digital Info (HS), W 2: Wave Behavior (MS), W 3: Digital vs Analog (MS), W 3: Modeling Electromagnetic Radiation (HS), W 5: Devices (HS), Waves & Electromagnetic Radiation

Beaming Simulated Space Ice

Enantiomeric separation of complex organic molecules produced from irradiation of interstellar/circumstellar ice analogs(NOT OPEN ACCESS) SUMMARY: To simulate conditions in space and in asteroids and meteorites, scientists put simple gases (water, carbon dioxide, ammonia, and methanol) into a low temperature and low pressure chamber. Then, using UV light, they irradiated these gases (which at the… Continue reading Beaming Simulated Space Ice